
Tutorial 6 2022.11.2

6.1 Midterm question 8

Problem 6.1
1. Let f and g be continuous on the region D in R3. Prove the inequality

2

∫∫∫
D
|fg|dV ≤ α2

∫∫∫
D
f2dV +

1

α2

∫∫∫
D
g2dV,

where α is a positive number. Hint: Use (a± b)2 ≥ 0.
2. Prove ∫∫∫

D
|fg|dV ≤

√∫∫∫
D
f2dV

√∫∫∫
D
g2dV

Hint: Make a good choice of α in the first inequality of 1..
Proof Assume 1. let’s prove 2.. If

∫∫∫
D f2dV = 0, then f = 0 on D, so

∫∫∫
D |fg|dV = 0 and the inequality

holds.
Therefore we may assume

∫∫∫
D f2dV ̸= 0 and

∫∫∫
D g2dV ̸= 0.

Consider the function f(α) = uα2 + v 1
α2 , α > 0 where u > 0, v > 0, then d

dαf(α) = 2uα− 2v 1
α3 .

Let d
dαf(α) = 2uα− 2v 1

α3 = 0, we get when α2 =
√

v
u the function f takes its minimal value 2

√
uv.

In our case, let u =
∫∫∫

D f2dV and v =
∫∫∫

D g2dV , then f(α) ≥ 2
∫∫∫

D |fg|dV implies

f((
v

u
)
1
4 ) = 2

√
uv = 2

√∫∫∫
D
f2dV

∫∫∫
D
g2dV ≥ 2

∫∫∫
D
|fg|dV

6.2 Elliptic integral

6.2.1 Perimeter of an eclipse

So how do you understand π, the ratio of a circle’s perimeter to its diameter? If you take it for granted,
then you could use it to do a lot of things and got many other calculation involving it.

Now think about the perimeter of an eclipse. Do it have the same property as the mysterious number π?
Consider an ellipse with major and minor arcs 2a and 2b and eccentricity e :=

(
a2 − b2

)
/a2 ∈ [0, 1), e.g.,

x2

a2
+

y2

b2
= 1.

What is the arclength ℓ(a; b) of the ellipse, as a function of a and b? Let x = a cos θ, y = b sin θ, a > b > 0,
then it has length

ℓ(a; b) = 4

∫ π/2

0

√
dx2 + dy2 = 4

∫ π/2

0

√
a2 cos2 θ + b2 sin2 θdθ

= 4

∫ π/2

0

√
a2 − (a2 − b2) sin2 θdθ = 4a

∫ π/2

0

√
1− e2 sin2 θdθ,

Let z = sin θ, then

ℓ(a, b) = 4a

∫ 1

0

√
1− ez2

1− z2
dz

= 4a

∫ 1

0

1− ez2√
(1− ez2) (1− z2)

dz.



6.2 Elliptic integral

We can not find the exact value of ℓ(a, b) by hands since the functions
√
1− e2 sin2 θ and 1−ez2√

(1−ez2)(1−z2)

can be proved to have no elementary anti-derivatives. However, we could assume we know its value just like
how we treat π.

6.2.2 Three kinds of elliptic integral

So here is a generalization. An elliptic integral is any integral of the general form

f(x) =

∫
A(x) +B(x)

C(x) +D(x)
√

S(x)
dx

where A(x),B(x),C(x) and D(x) are polynomials in x and S(x) is a polynomial of degree 3 or 4.
For some cases they are named

Definition 6.1

♣

1. The incomplete elliptic integral of the first kind is defined as

u = F (k, ϕ) =

∫ ϕ

0

dθ√
1− k2 sin2 θ

, 0 < k < 1,

where ϕ is the amplitude of F (k, ϕ) or u, written ϕ = am u, and k is the modulus, k = modu.
The integral is also called Legendre ’s form for the elliptic integral of the first kind. If ϕ = π/2,
the integral is called the complete integral of the first kind, denoted by K(k), or simply K.

2. The incomplete elliptic integral of the second kind is defined by

E(k, ϕ) =

∫ ϕ

0

√
1− k2 sin2 θdθ, 0 < k < 1,

also called Legendre’s form for the elliptic integral of the second kind. If ϕ = π/2, the integral
is called the complete elliptic integral of the second kind, denoted by E(k), or simply E. This
is the form that arises in the determination of the length of arc of an ellipse. For example,
ℓ(a, b) = 4aE(e).

3. The incomplete elliptic integral of the third kind is defined by

H(k, n, ϕ) =

∫ ϕ

0

dθ(
1 + n sin2 θ

)√
1− k2 sin2 θ

, 0 < k < 1, n ̸= 0,

also called Legendre’s form for the elliptic integral of the third kind.

Remark If the transformation v = sin θ is made in the Legendre forms, we obtain the following integrals, with
x = sinϕ

F1(k, x) =

∫ x

0

dv√
(1− v2) (1− k2v2)

E1(k, x) =

∫ x

0

√
1− k2v2

1− v2
dv

H1(k, n, x) =

∫ x

0

dv

(1 + nv2)
√

(1− v2) (1− k2v2)

called Jacobi’s forms for the elliptic integrals of the first, second, and the third kinds respectively. These are
complete integrals if x = 1. The Jacobi’s forms conform to the definition of elliptic integral.

In fact, any elliptic integral is a linear combination of elementary functions and the three kinds of elliptic
integrals.

By looking at a family of such integration, although we could not obtain the exact value, we can prove
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6.2 Elliptic integral

Figure 6.1: Lemniscate

some nice relations between them. The relations are much like the formulas for trigonometric, exponential, or
logarithmic functions which also provide many information. We will not discuss these relations but one could
refer to http://www.mhtlab.uwaterloo.ca/courses/me755/web chap3.pdf.

Also one could use the elliptic integral calculator in Mathematica or Matlab to get approximate numerical
values.

6.2.3 Arclength of a lemniscate

The lemniscate is the curve:
(
x2 + y2

)2
= a2

(
x2 − y2

)
, or in polar form r2 = a2 cos 2θ. It is the locus

of points the product of whose distances from two points (called the foci) is a constant. See figure 6.1
We shall use the arclength formula for polar coordinates:{

x = r cos θ

y = r sin θ

Then {
dx
dθ = ∂x

∂r
dr
dθ +

∂x
∂θ = cos θr′(θ)− sin θr(θ)

dy
dθ = ∂y

∂r
dr
dθ +

∂y
∂θ = sin θr′(θ) + cos θr(θ)

So
⇒
√

x′(θ)2 + y′(θ)2dθ =
√
r′(θ)2 + r(θ)2dθ

L = 4

∫ π/4

θ=0
ds = 4a

∫ π/4

θ=0

1√
cos 2θ

dθ =

∫ π/4

0

dθ√
cos 2θ

,
(
cos 2θ = cos2 u

)
⇒

=

∫ π/2

0

du√
2− sin2 u

=
1√
2

∫ π/2

0

du√
1− 1

2 sin
2 u

=
1√
2
·K

(
1√
2

)

Thus, L = 4a · 1√
2
K
(

1√
2

)
= a · 2

√
2(1.85407) = a(5.244102).
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6.2 Elliptic integral

6.2.4 Arclength of a cubic Bézier curve

Let the curve (x(t), y(t)) be defined by polynomials

x(t) = a3t
3 + a2t

2 + a1t+ a0

y(t) = b3t
3 + b2t

2 + b1t+ b0

The derivatives are:
x′(t) = 3a3t

2 + 2a2t+ a1

y′(t) = 3b3t
2 + 2b2t+ b1

Squaring these equations gives:(
x′(t)

)2
=
(
3a3t

2 + 2a2t+ a1
) (

3a3t
2 + 2a2t+ a1

)
=9a23t

4 + 6a3a2t
3 + 3a3a1t

2 + 6a3a2t
3

+ 4a22t
2 + 2a2a1t+ 3a3a1t

2 + 2a2a1t+ a21

=9a23t
4 + 12a3a2t

3 + 6a3a1t
2 + 4a22t

2 + 4a2a1t+ a21(
y′(t)

)2
=9b23t

4 + 12b3b2t
3 + 6b3b1t

2 + 4b22t
2 + 4b2b1t+ b21

So the calculation of arclength involves t up to the 4th power. A polynomial of fourth order is used to sort this:

L(τ) =

∫ τ

0

√
c4t4 + c3t3 + c2t2 + c1t+ c0dt

This is a elliptic integral not of the three kinds. But it can be expressed as a linear combination of elementary
functions and the elliptic integral of the three kinds.

6.2.5 Finite-amplitude pendulum.

The equation of motion is:

mlθ̈ = −mg sin θ. Let p = θ̇ → p
dp

dθ
= −g

l
sin θ

⇒ p2

2
=

g

l
cos θ + C.

At t = 0 : θ = θ0, θ̇ = 0 ⇒ dθ
dt = −

√
2g
l

√
cos θ − cos θ0. The period, T , is given by

T

4
=

√
l

2g

∫ θ0

0

dθ√
cos θ − cos θ0

,

or,

T = 4

√
l

2g

∫ θ0

0

dθ√
cos θ − cos θ0

= 2

√
l

g

∫ θ0

0

dθ√
sin2 (θ0/2)− sin2(θ/2)

= 4

√
l

g

∫ π/2

0

du√
1− k2 sin2 u

, sin

(
θ

2

)
= sin

θ0
2

· sinu, k = sin

(
θ0
2

)
∴ T = 4

√
l
g ·K(k), an elliptic integral. For the special case of small oscillations, k = 0, we get the classical

result:

T = 2π

√
l

g
.
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6.2 Elliptic integral

6.2.6 Pólya’s Random Walk Constants

Let p(d) be the probability that a random walk on a d-D lattice returns to the origin. In 1921, Pólya proved
that

p(1) = p(2) = 1,

but
p(d) < 1

for d > 2. Watson (1939), McCrea and Whipple (1940), Domb (1954), and Glasser and Zucker (1977) showed
that

p(3) = 1− 1

u(3)
= 0.3405373296 . . .

where
u(3) =

3

(2π)3

∫ π

−π

∫ π

−π

∫ π

−π

dxdydz

3− cosx− cos y − cos z

=
12

π2
(18 + 12

√
2− 10

√
3− 7

√
6){K[(2−

√
3)(

√
3−

√
2)]}2
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